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Abslract. Previous exact enumerations of the numbers and mean square lengths of short, 
first-neighbour-avoiding walks on the face-centred cubic, body-centred cubic and tet- 
rahedral lattices have been extended to 12, 13 and 21 terms, respectively. Examination of 
the augmented data suggests an asymptotic expression for the mean square length of the 
form 

( R  ;) - An 6’5 + Bn 

For the tetrahedral lattice this conjecture is supported by some new Monte Carlo data. 

1. Introduction 

The configurational properties of polymer chains in dilute solution are very often 
modelled by self-avoiding walks on lattices. Since such primitive models evidently 
represent a very great simplification of the physics of a real polymer, it is important to 
determine whether their properties are sensitive to minor changes in the Hamiltonian. 
For example, both exact enumeration (Domb 1963, Martin et a1 1967, Watts 1974) 
and Monte Carlo (Wall and Erpenbeck 1959, Gans 1965) studies suggest that the 
asymptotic behaviour of the mean square end-to-end length of self-avoiding walks is 
given by 

where the exponent yo = 6/5 for all three-dimensional lattices. This result is also 
confirmed by analytic approaches to the problem, such as the self-consistent field theory 
of Edwards (1965) and, more recently, the renormalisation group method as applied to 
the polymer problem by de Gennes (1972). The situation is less clear, however, for 
neighbour-avoiding walks in which the excluded-volume constraint is extended to 
forbid nearest-neighbour contacts as well. Monte Carlo calculations of (R i )  have 
tended to suggest that y, the corresponding exponent for neighbour-avoiding walks, has 
a value greater than 6/5 which may depend on the lattice in question as well. Thus 
McCrackin er a1 (1973) propose y = 1.22 for the simple cubic lattice and Mark and 
Windwer (1967) suggest y = 1.255 for the tetrahedral (TET) lattice. Kumbar and 
Windwer (1971) carried out exact enumerations of neighbour-avoiding walks on the 
TET and four-choice cubic lattices and concluded that y was about 1-25. By extending 
the enumerations on the TET lattice we were able to show (Tome and Whittington 
1975, to be referred to as I) that this estimate was much too high, but conventional 
extrapolation procedures nevertheless suggested a value of y greater than 1.20. 

( R  f), - n (1) 
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On the other hand, there are strong theoretical arguments for expecting that the 
mean square length exponent will not depend on the details of the excluded-volume 
constraint. We have already commented in I on a proof by Watson (1970) of a 
correspondence between self-avoiding walks on a lattice and neighbour-avoiding walks 
on the covering lattice; in the same paper Watson refers to some unpublished exact 
enumerations by Hioe of neighbour-avoiding walks on the simple cubic and face- 
centred cubic (FCC) lattices as indicating y = 6/5. More generally, the close analogies 
between the statistical mechanics of polymers and of magnetic spin systems suggest that 
the renormalisation group methods so successful in describing the critical behaviour of 
the latter ought to apply as well to the polymer problem. In particular, the exponents 
such as y, characterising the critical (i.e. infinite length) behaviour of polymers ought to 
depend only on such general features as dimensionality, and not on the lattice or the 
detailed nature of the interactions (McKenzie 1976). However, as Domb (1974) has 
pointed out, for any particular problem the numerical data, necessarily restricted to 
finite n, may not clearly exhibit the anticipated asymptotic behaviour. Recently, 
Rapaport (1976) has obtained some exact enumeration data on the FCC lattice which 
suggest such convergence problems do in fact exist for neighbour-avoiding walks. In 
varying the excluded-volume condition smoothly from the self-avoiding to the 
neighbour-avoiding case he observed increasing curvature in conventional ratio esti- 
mate plots of y, against n-’ ,  and concluded the extrapolations did not converge well 
enough to rule out the possibility y = 1.20. This is a particularly significant result since 
convergence might be expected to be rapid on this close-packed lattice (Sykes et a1 
1972). 

These considerations have prompted us to re-examine the numerical data on three 
lattices to see if the behaviour of the mean square length might be described by 

( R  z )  - An6’’ + Bn“, a < 6 / 5  (2 1 
in which the dominant singularity does in fact have an exponent corresponding to 
y = 6/5, though this might not be readily apparent for finite n because of the slowly 
decaying effect of a confluent singularity. The analysis of the exact enumeration data is 
described in the following section where we also report some new enumerations 
extending the earlier results. The asymptotic formula for (RK) deduced in § 2 is then 
compared in § 3 with Monte Carlo data for longer walks on the TET lattice and in Q 4 we 
summarise our conclusions regarding the asymptotic behaviour of the mean square 
length based on consideration of both types of numerical results. 

2. Exact enumerations and analysis 

We have carried our earlier enumerations (I) of the numbers, C,, and mean square 
lengths, (R i), of neighbour-avoiding walks on the body-centred cubic (BCC) and TET 
lattices a further one (n = 13) and two (n = 20,21) terms, respectively. Also, we have 
extended Rapaport’s data on the FCC lattice an additional three terms to n = 12 for the 
completely neighbour-avoiding case only. The computer program used is a slightly 
improved version of that described in I to which we refer the reader for computational 
details. The new terms are 

BCC C:3 = 6 612 947 048 ( R  f 3 )  = 103.1944 1 
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TET C20= 1 379 279 724 (Rio)= 177.41870 

C21= 3 807 507 996 (R: l )=  189.07815 

FCC Clo= 315 466 884 (R:o) = 54.99869 

( R : ] )  = 62.28771 C11= 2 068 604 028 

C12= 13 549 151 244 (R:2) = 69.73303. 

(We have used a metric in which R :  = 3 for the BCC and TET cases and R :  = 2 for the FCC 
lattice.) 

If the divergence of (R: )  can be described by a single exponent 

(R:)  -A’nY (3) 
then we can form successive estimates of y by the usual ratio methods: 

For the loose-packed lattices, much of the odd-even alternation in estimates such as (4) 
can be removed by taking the mean of successive pairs of y,, ’~: 

rX=S(yn +yn+l) ( 5 )  
and the limiting value of y is then estimated by successive linear extrapolants of pairs of 
y?s: 

7:) = (n + 1)yn*+1- ny X. (6a) 
For the close-packed FCC case we would not expect odd-even alternation to be a 
problem so that we may form instead the extrapolants 

~ ! ! = ( n  +l )yn+i-nyn.  (66) 
The values of yX (y,, for the FCC case) and 7:) for the three lattices are shown in table 1.  
In all three cases the estimates of y converge much more slowly than for the 
self-avoiding walk case; the odd-even alternation in 7:’ for the FCC lattice is quite 
uncharacteristic of similar estimates for self-avoiding walks on the same lattice. The 
new data presented here and the slightly different extrapolations used do not alter the 
conclusions reached in I: the data show some curvature and, although a value of y as low 
as 6/5 cannot be convincingly demonstrated, the earlier estimate of Kumbar and 
Windwer (1971) of y = 1.255 for the TET lattice based on a shorter series can be safely 
ruled out. This latter point is important because it is this value of y which appears to 
give the best fit to Monte Carlo data for much longer walks (see 0 3, also Mark and 
Windwer 1967). This suggests that, for the range of n covered by the Monte Carlo and 
exact enumeration studies, the simple form (3) for ( R i )  is inadequate and we are led, 
therefore, to the inclusion of a subdominant singularity as in (2). We have investigated 
this possibility for each lattice by assuming a series of values for the second exponent a 
and calculating for each the estimates of B / A  for successive values of n according to 

1 (7) Dn E ( B / A ) ,  = (RX - l)/[(n +j )a-6 /5  - R f n a  - 6 / 5  

where 
(R:+j)n6/5 

= ( R  :)(n +j)6’5 
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Table 1. Estimates y:, yn and y'," (equations (5), (6)) of y assuming no confluent 
singularity. 

Tetrahedral lattice FCC lattice BCC lattice 

4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

1.50074 
1.46093 
1.44552 
1.39687 
1.38178 
1.36860 
1.35952 
1.35008 
1.34323 
1.33503 
1.32926 
1.32198 
1.31736 
1.31173 
1.30797 
1.30324 

1.30168 
1.36846 
1.10502 
1.27610 
1.26315 
1.27781 
1,25573 
1,26791 
1.23652 
1.25427 
1.2201 5 
1.24798 
1.22167 
1.24412 
1.21777 

1.48 106 
1.45225 
1.43 183 
1.40108 
1.38137 
1.36522 
1.35252 
1.33999 

1.33701 1.47377 1.23242 
1.32973 1.42550 1.25072 
1.2 1658 j.39637 1.2 1934 
1.24340 1.37108 1.22716 
1.23602 1.35309 1.21179 
1.23822 1.33739 1.21659 
1.21469 1.32531 1.21016 

1.31484 

with j = 1 for the FCC lattice a n d j  = 2 for the BCC and TET lattices. The resulting values 
of D, are plotted against n for a series of possible exponents a for the TET lattice in 
figure 1 and, on an expanded scale, for the BCC and FCC lattices in figures 2 and 3, 
respectively. In all cases as n increases -D, appears to approach a stable value from 
below for a = 0.4-0.6. The situation is clearest for the mTlattice where data have been 
obtained for longer walks and strongly suggest the presence of a subdominant 
singularity with exponent a = 3/5. For the BCC and FCC lattices the existence of such a 
singularity also seems very likely, though the precise value of the exponent is difficult to 
estimate from the more limited data. A universal value of 3/5 for (Y does not appear 
likely since, for this assumed exponent, -D, for both lattices rises to a maximum and 

F l l l , l , l l l , ~ , ~ , ~  ] I  -I 
L 8 12 16 20 

n 

figure 1. Estimates, D,, of the relative amplitude of the subdominant singularity for the 
tetrahedral lattice. 
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I I  I I I I I I I I I  

n 

Figure 2. As figure 1 but for the body-centred cubic lattice. 

I I I I I I I 
3 5 7 9 11 

n 

FCgure 3. As figure 1 but for the face-centred cubic lattice. 
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begins to fall, though the possibility cannot be completely ruled out in the absence of 
knowledge about possible additional singularities in the generating function of (I?:). 
However, it seems more natural to attempt to estimate the most likely value of a (and 
the relative amplitude B/A)  keeping in mind the behaviour of the TET lattice estimates 
for the same values of n. On this basis the amplitude of the dominant singularity can 
then be estimated as the limiting value of 

(RI) 
n615[l +(B/A)n"-6'5]' 

A,, = 

We suggest the following values for the parameters in (2): 

FCC CY = 2 / 5 ,  B/A = -0.77, A = 3.95 

BCC (Y = 1/2, B/A = -0.85, A = 5.53 

TET ff = 3/5, B/A = -0.8 1, A = 5-63. 
(9) 

3. Monte Carlo results 

To further test (2) as a description of the asymptotic behaviour of the mean square 
length requires information for longer walks than can be enumerated exactly. Accord- 
ingly, we have used the Monte Carlo technique of inversely restricted sampling due to 
Rosenbluth and Rosenbluth (1955) to generate a sample of 100000 neighbour- 
avoiding walks of up to 200 steps on the tetrahedral lattice. To obtain asymptotically 
unbiased estimates of configurational averages by this method (McCrackin 1972) the 
contribution of the kth n-step walk must be included with a weight wk(n) so that 
eM((R;)) ,  the estimate of (R:) from a sample of M walks, is given by 

Because wk(n) can vary between unity and (q - l)", where q is the coordination number 
of the lattice, enormous fluctuations are possible for large n in estimates such as (10) 
which therefore must not be accepted uncritically. Even with the relatively large 
sample used here (about 50% of the walks survive to the full 200 steps) we are unable to 
place any useful confidence limits on ( R i )  for n > 150; these values are reported in 
parentheses in table 2. For n s 150 we have indicated standard errors for each (R;),  
obtained by applying the usual statistical formulae to the ten independent estimates of 
(Ri) that result from evaluating (10) over successive samples of 10 000 walks. Also 
shown for comparison are the earlier Monte Carlo data of Mark and Windwer (1967), 
generated using the enrichment technique of Wall and Erpenbeck (1959), on the basis 
of which they suggested 

(Ri) - 4- 15n 

The predictions of this formula as well as those of equation (2) with the parameters 
deduced in the previous section, namely, 

(12) (Ri) - 5*63(n6l5 - 0.8 ln315) 
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Table 2. Comparison of Monte Carlo data and theoretical predictions for ( R i )  on the 
tetrahedral lattice. 

Monte Carlo 

Mark and 
n Windwer (1967) This work Equation (12) Equation (1 1) 

16 
32 
48 
64 
80 
96 

112 
128 
144 
160 
176 
192 

131.9 
328.7 
548.7 
777.5 
1032 
1266 
1503 
1781 
2075 
2434 
2712 
3154 

132.4iz0.4 
323.4k0.9 
537.2*2.8 
761.3k4.5 
1001 *7 
1270* 17 
1550*38 
1754*39 
2072 * 58 
(2426) 
(2658) 
(2876) 

132.8 
323.8 
539.6 
772.5 
1019 
1276 
1542 
1818 
2101 
2390 
2685 
2987 

134.8 
321.8 
535.4 
768.2 
1017 
1278 
1551 
1834 
2126 
2427 
2735 
3151 

are shown in table 2 alongside the Monte Carlo data. Equation (12) appears to give 
distinctly better agreement with the present Monte Carlo data than does the formula of 
Mark and Windwer. This is confirmed when we form S,, the sum of square deviations of 
the present Monte Carlo data from the two formulae between n = 10 and n = 150, each 
point weighted with the reciprocal of its variance: 

S,  (equation (12)) = 237 

S,  (equation (11)) = 1923. 

This difference remains clear, if somewhat smaller, for S,, the sum of unweighted 
square deviations: 

S, (equation (12)) = 8 1 903 

S,  (equation (11)) = 132 170. 

Meaningful comparisons of the two formulae with the earlier Monte Carlo data are 
difficult in the absence of any information about the sample size or variance. However, 
attempting to fit either set of Monte Carlo data to equation (3), in which the subdomin- 
ant singularities are assumed to be unimportant, leads to values of the exponent y of 
1.24 or 1.25. As discussed in the preceding section these values are higher than any that 
can be reconciled with the exact enumeration data. They are, however, precisely what 
would be expected to result from such a procedure if (R;) is given by equation (12), 
because of the slow decay of the second singularity. The small amount of curvature that 
should, in principle, be present in a plot of In (R:)  against In n, in the range 10 s n  s 
200, would be too gradual to be distinguished from the statistical noise of the Monte 
Carlo results, particularly for the larger values of n where it might otherwise be more 
apparent. We are led, therefore, to accept equation (12) and, more generally, equation 
(2) as the satisfactory explanation of the asymptotic behaviour of (R:) that is consistent 
with both the exact enumeration and Monte Carlo results. 
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4. Conclusion 

We have extended exact enumeration data for the mean square length of neighbour- 
avoiding walks on three lattices. When considered together with Monte Carlo data for 
longer walks these data show that the simple relationship (R:)-A'nY is inadequate. 
In view of the strong theoretical arguments in favour of a universal value of 6/5 for the 
dominant exponent we have postulated that ( R ; ) - A ~ I ~ ' ~ + B ~ "  and have shown that 
this form is capable of accounting for the trends in both the Monte Carlo and exact 
enumeration data. The subdominant exponent (Y appears to have a mild dependence 
on the lattice varying between about 2/5 for the FCC lattice and 3/5 for the tetrahedral 
lattice. 
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